太阳城集团app-澳门太阳城集团娱乐城注册送彩金28_澳门百家乐群代理_一速全讯网111565官方 (中国)·官方网站

學術信息

【航宇大講堂】Application of Fractional Calculus for the Analysis of Nonlinear Damped Vibrations of Suspension Bridges

發(fā)布時間:2019-10-30瀏覽次數(shù):975發(fā)布者:顏士軒來源:南京航空航天大學

報告題目Application of Fractional Calculus for the Analysis of Nonlinear Damped Vibrations of Suspension Bridges

報告人:  Prof. Marina Shitikova Voronezh State Technical University, Russia

報告時間: 20191031日(周四)上午 11:00

報告地點:明故宮校區(qū)A18-807

主辦單位:機械結構力學及控制國家重點實驗室、航空學院、科協(xié)、國際合作處

報告內(nèi)容簡介:

This lecture is devoted to the analysis of dynamic behavior of suspension bridges subjected to the different conditions of the internal resonances.

First we consider nonlinear free damped vibrations of a suspension bridge with a bisymmetric stiffening girder under the conditions of the internal resonance one-to-one, i.e., when natural frequencies of two dominating modes - a certain mode of vertical vibrations and a certain mode of torsional vibrations - are approximately equal to each other, or two-to-one, when one frequency is twice larger than the other. Damping features of the system are defined by fractional derivatives with fractional parameters (the orders of the fractional derivatives) changing from zero to one. It is assumed that the amplitudes of vibrations are small but finite values, and the generalized method of multiple scales suggested in is used as a method of solution. The influence of uncertainty in choosing the fractional parameters on the character of nonlinear damped vibrations of suspension bridges is investigated.

Then nonlinear forced vibrations of suspension bridges, when the frequency of an external force is approaching one of the natural frequencies of the suspension system, which, in its turn, undergoes the conditions of the one-to-one internal resonance, are investigated via the generalized method of multiple time scales. The damping features are described by the fractional derivative, which is interpreted as the fractional power of the differentiation operator. The influence of the fractional parameters (orders of fractional derivatives) on the motion of the suspension bridge model is investigated.

報告人簡介:

Marina Shitikova,俄羅斯沃羅涅日國立技術大學教授,美國機械工程師協(xié)會、美國聲學協(xié)會、歐洲機械協(xié)會成員,曾是德國DAAD 訪問研究員,并獲得過美國Fulbright Senior Fellowship。她的研究小組(Center on Fundamental Research in Dynamics of Solids and Structures)在結構振動的建模和實驗研究方面很有建樹,特別是在分數(shù)階導數(shù)阻尼建模和非線性振動理論方面頗具實力。Shitikova教授有20多年的科研工作經(jīng)驗,多次到美國和德國參加學術交流;近年來主持了多個國際合作、俄羅斯國家科研基金以及新工程設計規(guī)范分析項目。她在工程力學頂級刊物ASME Applied Mechanics Review上發(fā)表過多篇論文,文章引用率高,其學術成果得到國際同行的廣泛認可。

任我赢百家乐自动投注分析系统| 24山的财位| 百家乐官网起步多少| 百家乐官网群bet20| 德州扑克排名| 英山县| 真人百家乐平台下载| 现金百家乐官网| 广东百家乐主论坛| 钱隆百家乐官网软件| 百家乐送现金| 娱网百家乐官网补丁| 零点棋牌下载| 百家乐娱乐人物| 百家乐官网投注网站| 百家乐庄最高连开几把| 百家乐官网规则以及玩法| 文化| 百家乐存200送200| 做生意带什么装饰招财| 百家乐官网假在哪里| 东京太阳城王子酒店| 至尊娱乐| 太阳城申博娱乐| 百家乐2万| 七胜百家乐官网娱乐城总统网上娱乐城大都会娱乐城赌场 | 百家乐娱乐城会员| 百家乐官网资金注码| 兰桂坊百家乐的玩法技巧和规则| 百家乐官网的注码技巧| 鼎尊国际娱乐| 百家乐闲和庄| 百家乐官网出庄的概率| 百家乐官网专打和局| bet365体育投注心得| 百家乐网址是多少| 百家乐官网庄闲和收益| 涞源县| 宝马会娱乐城返水| 威尼斯人娱乐场28gxpjwnsr| 高级百家乐出千工具|