太阳城集团app-澳门太阳城集团娱乐城注册送彩金28_澳门百家乐群代理_一速全讯网111565官方 (中国)·官方网站

A semi-automated high-order modelling and simulation approach for in-vivo bone analyses

作者:時(shí)間:2017-07-14瀏覽:1858供圖:審閱:來(lái)源:南京航空航天大學(xué)

字體:

題目:A semi-automated high-order modelling and simulation approach for in-vivo bone analyses

報(bào)告人:Martin Ruess (英國(guó)格拉斯哥大學(xué))

時(shí)間:2017717日(周一)上午10:00-1100

地點(diǎn):明故宮校區(qū)A18-526會(huì)議室

主辦單位:國(guó)際合作處、科協(xié)、航空宇航學(xué)院、航空航天交叉研究院

報(bào)告摘要:

    In this talk a high-order analysis framework for bone mechanics simulation is presented. The method employs unfitted finite element meshes and voxel quadrature rules to seamlessly transfer CT data into a patient-specific bone discretization. It further applies a phase-field based formulation for imposing traction constraints in a diffuse sense 1. The essential component of this approach is a diffuse geometry model generated from a metastable phase-field solution of the Allen-Cahn problem that assumes the imaging data asinitial condition. It will be shown that in the context of the voxel finite cell method2, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field,the voxel spacing and the mesh size, are properly related. The flexibility of the proposed method and its suitability for the clinical use will be demonstrated by analysing stresses in a human femur and a vertebral body.    
1L.H. Nguyen, S.K.F. Stoter, T. Baum, J.S. Kirschke, M. Ruess, Z. Yosibash, D. Schillinger (2017). Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures, Int'l Journal for Numerical Methods in Biomedical Engineering, DIO: 10.1002/cnm.2880
2D. Schillinger, M. Ruess(2015). The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Archives of Computational Methods in Engineering 22(3), pp. 391-455.

報(bào)告人簡(jiǎn)介:

    Dr. Martin Ruess is Associate Professor at the School of Engineering, University of Glasgow, UK. Dr. Ruess graduated from TU Berlin with a diploma and a PhD-degree in Civil Engineering and received a Habilitation-degree from TU München. Prior to his appointment at Glasgow, Dr. Ruess worked as Assistant Professor at TU Delft, as Visiting Professor at TU Berlin and Research Associate at TU München. Dr. Ruess' scientific background is computational mechanics with a focus on higher-order approximation methods, immersed boundary methods and bio-mechanical simulations. In his recent work Dr. Ruess has focused on weak enforcement methods for boundary and coupling conditions in isogeometric analysis and fictitious domain methods, reduced-order models for stability analyses of thin-shell structures and validated bone mechanics simulations.



网络百家乐官网会输钱的多吗| 网上百家乐大转轮| 哪个百家乐平台信誉好| 黔南| 送58百家乐的玩法技巧和规则| 澳门百家乐官网怎么赢钱| 真人游戏 豆瓣| 赌球心得| 百家乐博赌场娱乐网规则| 先锋百家乐官网的玩法技巧和规则 | 网上投注| 微信百家乐群二维码| 阴宅24山吉凶| 百家乐官网终端下载| 德州扑克胜率| 百家乐连线游戏下载| 百家乐官网破解方法技巧| 真钱百家乐赌博| 威尼斯人娱乐下载平台| 打牌网| 大发888ber娱乐场下载| 如何胜百家乐的玩法技巧和规则| 1月24进房子风水好吗| 百家乐官网白菜价| 网上百家乐官网可靠| 百家乐客户端软件| 百家乐官网qq游戏| 百家乐官网实时路单| 在线百家乐大家赢| 百家乐官网网站程序| 林口县| 速博| bet365娱乐场| 百家乐韩泰阁| 百家乐赌博机原理| 大桥下做生意风水好吗| 百家乐官网制胜法| 百家乐官网开户投注| 德州扑克的规则| 网络百家乐破解器| 百家乐平台注册送现金|